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Miscellanea 

The empirical Bayes approach: estimating the prior distribution 

BY J.R. RUTHERFORD* AND R. G. KRUTCHKOFF 

Virginia Polytechnic Institute 

There is a random variable A distributed according to a specifk but unknown prior distribution Gfrom 
an appropriate class GD.The random variable A = h is unobservable but another random variable 
X = x, distributed with known conditional distribution function P(xlh),is observable. We construct 
estimators G,(h)of G(h)such that lim E[{G,(h)-G(h)},]= 0 and we use G,(h)to estimate the posterior 
distribution G(hlx)and hence to construct consistent estimators of posterior confidence intervals. 

We assume that we are able to observe &he conditionally independent random variables X I ,  X, ,  ...,X,, 
which are distributed according to the known, single parameter, conditional density function f (a,[ A,). 
The 'parameters ' are realizations of the unobservable random variables A,, A,, ...,A, which are 
independently distributed according to the unknown prior distribution G(h).The problem considered 
here is the estimation of G(h):the need for a solution to this problem was pointed out by Robbins (1964). 
The constructive method presented here requires that: 

(a)  The density function f (xlh)be such that there exist known functions hk(x) (k  =1,2 ,3 ,4) ,for which 

(b) The prior distribution be some unspecified Pearson curve, with certain minor restrictions given in 
the next section. 

For any two numbers A, and A* let 

The method developed in this note provides estimates of P(h,  < A < h*),a 'modernized' Bayes con- 
fidence interval and estimates of P(h,  < A < h*IX = x), a ' classical' Bayes confidence interval (see 
Neyman, 1952, p. 161). 

2. ESTIMATING DISTRIBUTIONTHE PRIOR 

From condition (a)we have 

E{hk(X)lh)= hk (k=  1,2,3,4).  


Taking expectations of both sides of equation ( 1 ) we obtain 

1 " 
Let us define the functions Mk,,(x)= - hk(x,) (k =1,2 ,3 ,4) ,

n i=l 

where x represents the sequence of realizations a,, x,, ...,a,. 
If E(A4)< co,then by the Kolmogorov strong law of large numbers we have that almost surely 

Let p = {E(A) ,  E(A2) ,  E(A3) ,  E(A4)) and = {MI,  AX) ,  M2, , (X),  Ma, ,(X), M4, , (X)}.  
From condition (b),  G(h) is a Pearson curve and has a density function g(h);we denote the dependence 

of these functions on their moments by writing G(h; y) and g(h; y). The domain of y is defined in terms 
of semi-open and open regions in the (P1,Pz)-plane; PI = p:/p& P, = p4/pi if p1 = 0. The restrictions 
mentioned in (b)are that the moments of the prior distribution must be such that the associated values 

* Now a t  Royal Military College of Canada. 
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of pl and p, are in the regions defining the domain of y .  The regions are between the lines P, -Pl - 1 = 0 
and 8P2- 15P1-36 = 0 exclusive of the points on the biquadratic curves 

Pl(P2 +3)?8Pz - PI - 12)-4(4P2-3Pi)( 5 P 2  -6P1- 9 ,  = O 

and P1(P2+3)"5P~-GP1-9)-(4P~-3P1)(7Pz-gP1-15)" 0. 

These curves are called curves of discontinuity by Dumas (1948). 
The estimator of g(h;  y )  will be g{h; M n ( X ) ) ,  where g{h; M n ( X ) )  represents the solution of Pearson's 

differential equation with M n ( X )  substituted for y .  For n sufficiently large, with probability one 
g{h; M, (X)}  will be well defined. The Pearson curves are continuous functions of y for every h,hence 
from equation ( 3 )me obtain that almost surely 

g(h;  M , ( X ) )  + g(h;  y ) ,  for every A. ( 4 )  

From a result of Scheffb (1947)we obtain finally that almost surely 

G(h;  M , ( X ) )  + G(h;  y ) ,  uniformly in A. ( 5 )  

Let h ,  and h* be two numbers. The posterior probability of an interval (A,, A*) is defined to be 

P ( h ,  4 A < h * 1 X . = x )  = -af ( x l h ) d G ( h ) ./ ~ * * f ( ~ ~ . \ ) d G ( h ) / / ~  

Let Gn(h)= G{h; M n ( X ) )  and define 

I f f  ( x l h )is a continuous function of h for every x then by the Helly-Bray lemma me obtain that almost 
surely 

Pn(h,  < A < h*IX = x )  +P ( h ,  4 A < h*lX = x ) ,  

and we have the required estimate. 

The data for the example are taken from JTosteller & Wallace (1963).A collection of a man's writings 
was broken up into 247 blocks of 200 words and the observed frequency of the word may mas recorded; 
see row 1 and row 2 of Table 1. 

We assumed that these observations were distributed according to a Poisson density with mean h 
and that h was distributed according to an unknown Pearson distribution. For the Poisson density the 
functions h,(x) are: h l ( x )= x ,  h,(x) = x(x- l ) ,h,(x) = x(x- 1) ( x -  2 )  and h,(x) = x ( x -  1)  ( x -  2 )  ( x -  3) .  

The central moments, Jpl  and /3, were found to be ,ul = 0.8097,p, = 0.5834, JP1 = 0.50 and Pz = 2.069. 
Using tables of Pearson's curves provided by Johnson et al. (1963) we drew a graph of Gn(h) ,the estimate 
of G(h) .We then evaluated numerically the fitted distribution Pn(x) ,where 

Here 1, and I ,  are the estimated lower and upper limits of the prior distribution and p(xl A) = e-hhZ/x!. 
In the last row of Table 1 this fit is seen to be about as good as the negative binomial fit. The closeness 

Table 1. Observecl, $tted Poisson, negative binomial and empirical Bayes 
distributions for the word may 

Occurrence 0 1 2 3 4 5 6 7 

Observed 128 6 7 32 14 4 1 1 -

Poisson 109.9 88.9 36.0 9.7 2.0 0.3 0.1 -
NegativeBinomial 128.2 69.4 30.1 12.1 4.6 1.7 0.6 0.3 
Empirical Bayes 127.3 65.2 34.9 13.1 4.7 1.5 0.4 0.0 



of fit is not affected very much by different assumptions about the prior distribution. We see this 
because a negative binomial random variable can be generated by a Poisson variable with a mean of h 
which is the realization of a type 111, or gamma, variable whereas the estimates of Jp, and P2for the 
prior distribution indicate that the prior distribution is an L-shaped type I curve. 

We also evaluated by numerical integration the posterior probability of the interval (O.1,1.9), that is 

Pn(O1 < A < 1.91X = x )  = Gn(1.9)-- dh. 

Table 2. Posterior probability of the interval (0.1, 1.9) 

The prior probability of the interval (0.1, 1.9) was estimated to be 0.93 from the graph of G,(h). 

Other one-parameter density functions satisfying condition ( a )  are the binomial with unknown 
proportion A; the gamma with unknown scale A; the uniform with unknown range h; and the normal 
with either mean or variance unknown. A density function not satisfying condition ( a )is 

We emphasize that it is necessary to assume only that the prior distribution is a member of the Pearson 
family of curves: the continuity of the family with respect to y ensures this. The essential feature of 
condition ( b )is that the prior distribution functions are continuous in the estimable moments and that 
the moments are finite. The Pearson family was chosen because of its size and the availability of tables. 

The motivation for the technique developed here was introduced by von Mises (1942).For a discussion 
of some of the practical problems associated with estimating a distribution by moments see Pearson 
(1963).  

This work was supported in part by the U.S. Office of Army Research. 
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